Part Number Hot Search : 
PI74FCT GMS34112 UN1210 P4KE33 M63827DP 74LVX125 B380C MAX3055
Product Description
Full Text Search
 

To Download MAX1600MAX1603 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  max1600/max1603 dual-channel cardbus and pcmcia vcc/vpp power-switching networks ________________________________________________________________ maxim integrated products 1 for free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. for small orders, phone 408-737-7600 ext. 3468. 19-4752; rev 3; 5/98 part max1600 eai max1603 eai -40? to +85? -40? to +85? temp. range pin-package 28 ssop 28 ssop general description the max1600/max1603 dc power-switching ics con- tain a network of low-resistance mosfet switches that deliver selectable vcc and vpp voltages to two cardbus or pc card host sockets. key features include ultra-low-resistance switches, small packaging, soft- switching action, and compliance with pcmcia specifi- cations for 3v/5v switching. 3.3v-only power switching for fast, 32-bit cardbus applications is supported in two ways: stiff, low-resistance 3.3v switches allow high 3.3v load currents (up to 1a); and completely independent internal charge pumps let the 3.3v switch operate nor- mally, even if the +5v and +12v supplies are discon- nected or turned off to conserve power. the internal charge pumps are regulating types that draw reduced input current when the vcc switches are static. also, power consumption is automatically reduced to 10? max when the control logic inputs are programmed to high-z or gnd states, unlike other solutions that may require a separate shutdown-control input. other key features include guaranteed specifications for output current limit level, and guaranteed specifica- tions for output rise/fall times (in compliance with pcmcia specifications). reliability is enhanced by thermal-overload protection, accurate current limiting, an overcurrent-fault flag output, and undervoltage lock- out. the cmos/ttl-logic interface is flexible, and can tolerate logic input levels in excess of the positive sup- ply rail. the max1600 and max1603 are identical, except for the max1603? vy switch on-resistance (typically 140m ). the max1600/max1603 fit two complete cardbus/ pcmcia switches into a space-saving, narrow (0.2in. or 5mm wide) ssop package. ________________________applications desktop computers data loggers notebook computers docking stations handy-terminals pcmcia read/write drives ordering information ____________________________features ? supports two pc card/cardbus sockets ? 1a, 0.08 max 3.3v vcc switch (max1600 only) 1a, 0.14 max 5v vcc switch ? soft switching for low inrush surge current ? overcurrent protection ? overcurrent/thermal-fault flag output ? thermal shutdown at t j = +150? ? independent internal charge pumps ? break-before-make switching action ? 10? max standby supply current ? 5v and 12v not required for low-r ds(on) 3.3v switching ? complies with pcmcia 3v/5v switching specifications ? super-small 28-pin ssop package (0.2in. or 5mm wide) ? code compatible with: cirrus cl-pd67xx family databook db86184 intel 82365sl (industry-standard coding) decode logic vy 12in vy vx vx overcurrent and thermal shutdown max1600/max1603 vdd code select gnd 12in vy vx vl vppa vcca vcca vcca fault code vppb vccb vccb vccb control inputs simplified block diagram pin configuration appears on last page.
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks 2 _______________________________________________________________________________________ absolute maximum ratings electrical characteristics (vl = vy = 3.3v, vx = 5v, 12ina = 12inb = 12v, t a = 0 c to +85 c, unless otherwise noted. typical values are at t a = +25 c.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. inputs/outputs to gnd (vl, vx, vy, vcca, vccb) (note 1) ........................ -0.3v, +6v vpp inputs/outputs to gnd (12ina, 12inb, vppa, vppb) (note 1) .................. -0.3v, +15v logic inputs to gnd (a0vcc, a1vcc, b0vcc, b1vcc, a0vpp, a1vpp, b0vpp, b1vpp) (note 1) ............... -0.3v, +6v code input to gnd ......................................... -0.3v, (vl + 0.3v) vcca, vccb output current (note 2) ..................................... 4a vppa, vppb output current (note 2) ............................... 250ma vcca, vccb short circuit to gnd ............................ continuous vppa, vppb short circuit to gnd .............................. continuous continuous power dissipation (t a = +70 c) ssop (derate 9.52mw/ c above +70 c) .................... 762mw operating temperature range max160_eai/max1603eai .............................. -40 c to +85 c storage temperature range ............................. -65 c to +160 c lead temperature (soldering, 10sec) ............................. +300 c 2.4 2.5 2.8 v 11 13 input voltage range a 25 150 vl quiescent supply current a 1 standby supply current a 15 100 12in_ quiescent supply current a 4 10 vl standby supply current units min typ max parameter vx or vy, all switches 0v or high-z, control inputs = 0v or vl, t a = +25 c 1 a 12in_ standby supply current 3.0 5.5 0.06 0.08 a 0 1 operating output current range 0.10 0.14 on-resistance, vx switches a 20 100 vy quiescent supply current a 20 100 vx quiescent supply current v/ s 0.05 vl fall rate 1.8 3.0 v 1.4 2.5 2.8 undervoltage lockout threshold 5.0 8.0 10.0 vl falling edge when using vl as shutdown pin (note 3) vx, vy or vl 12ina, 12inb any combination of vy switches on, control inputs = 0v or vl, no vcc loads max1600 vcca or vccb, vx = vy = 3v to 5.5v any combination of switches on 12ina tied to 12inb, vppa and vppb 12v switches on, control inputs = 0v or vl, no vpp loads conditions 12in falling edge 12ina tied to 12inb, all switches 0v or high-z, control inputs = 0v or vl, t a = +25 c 12ina = 12inb = 0v to 13v, vx = 4.5v, vy = 0v to 5.5v, i switch = 1a, t a = +25 c any combination of vx switches on, control inputs = 0v or high-z, no vcc loads 12in rising edge vx, vy falling edge 12ina = 12inb = 0v to 13v, vy = 3v, vx = 0v to 5.5v, i switch = 1a, t a = +25 c 0.14 0.24 on-resistance, vy switches max1603 all switches 0v or high-z, control inputs = 0v or vl, t a = +25 c a 1.2 4 output current limit vcca or vccb power-supply section vcc switches note 1: there are no parasitic diodes between any of these pins, so there are no power-up sequencing restrictions (for example, logic input signals can be applied even if all of the supply voltage inputs are grounded). note 2: vcc and vpp outputs are internally current limited. see the electrical characteristics .
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks _______________________________________________________________________________________ 3 electrical characteristics (continued) (vl = vy = 3.3v, vx = 5v, 12ina = 12inb = 12v, t a = 0 c to +85 c, unless otherwise noted. typical values are at t a = +25 c.) vcca or vccb, 0v to vx or vy, c l = 30 f, r l = 25 , 50% of input to 90% of output, t a = +25 c hysteresis = 20 c (note 4) v fault = 5.5v, high state i sink = 1ma, low state vppa or vppb forced to 0v, high-z state, t a = +25 c vcc_ or vpp_, load step to fault output, 50% point to 50% point (note 3) vppa or vppb < 0.4v, programmed to 0v state vppa or vppb, programmed to 12v vppa or vppb 12in = 11.6v, i switch = 100ma, t a = +25 c programmed to vx (5v) or vy (3.3v), t a = +25 c vppa or vppb, 0v to 12in_, c l = 0.1 f, 50% of input to 90% of output, t a = +25 c conditions c 150 thermal shutdown threshold a -0.5 0.5 fault output leakage current v 0.4 fault output low voltage s 1 fault signal propagation delay ms 1.2 30 output propagation delay plus rise time ms 2 10 output propagation delay plus rise time a 10 output leakage current ma 10 output sink current ma 130 200 260 output current limit ma 0 120 operating output current range 0.70 1 on-resistance, 12v switches 1 3 on-resistance, vpp = vcc switches units min typ max parameter vcca or vccb, vx or vy to 0v, c l = 30 f, r l = open circuit, 50% of input to 10% of output, t a = +25 c ms 60 100 output propagation delay plus fall time vcca or vccb, vx or vy to 0v, c l = 1 f, r l = 25 , 90% to 10% points ms 6 output fall time ?atabook?code ?irrus?code ?ntel?code __vcc, __vpp __vcc, __vpp v 1.2 vl - 1.2 code input mid-level voltage v vl - 0.4 vl code input high voltage v 0 0.4 code input low voltage v 1.5 logic input high voltage v 0.6 logic input low voltage vppa or vppb, 0v to 12in_, c l = 0.1 f, 10% to 90% points, t a = +25 c s 100 800 output rise time __vcc, __vpp, code a -1 1 logic input bias current vcca or vccb, 0v to vx or vy, c l = 1 f, r l = open circuit, 10% to 90% points, t a = +25 c s 100 1200 output rise time vppa or vppb, 12in_ to 0v, c l = 0.1 f, 90% to 10% points vppa or vppb, 12in_ to 0v, c l = 0.1 f, 50% of input to 10% of output, t a = +25 c ms 1 output fall time ms 9 60 output propagation delay plus fall time vcca or vccb forced to 0v, high-z state, t a = +25 c a 10 output leakage current vcca or vccb < 0.4v, programmed to 0v state ma 20 output sink current vpp switches interface and logic section
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks 4 _______________________________________________________________________________________ electrical characteristics (vl = vy = 3.3v, vx = 5v, 12ina = 12inb = 12v, t a = -40 c to +85 c, unless otherwise noted.) vx or vy, all switches 0v or high-z, control inputs = 0v or vl, t a = t min to t max 12ina tied to 12inb, all switches 0v or high-z, control inputs = 0v or vl all switches 0v or high-z, control inputs = 0v or vl v 3.0 5.5 0.6 a 100 vy quiescent supply current vl falling edge, hysteresis = 1% logic input low voltage __vcc, __vpp vx, vy or vl 15 12ina, 12inb a 12in_ standby supply current 1.8 a 100 any combination of vy switches on, control inputs = 0v or vl, no vcc loads vx quiescent supply current v 1.4 2.9 undervoltage lockout threshold 5 10 any combination of switches on 12ina tied to 12inb, vppa and vpb 12v switches on, control inputs = 0v or vl, no vpp loads conditions 12in falling edge 2.3 2.9 v 11 13 any combination of vx switches on, control inputs = 0v or high-z, no vcc loads 12in rising edge input voltage range vx, vy falling edge a 150 vl quiescent supply current a 15 standby supply current a 100 12in_ quiescent supply current a 15 vl standby supply current units min typ max parameter v 1.6 logic input high voltage __vcc, __vpp __________________________________________ t ypical operating characteristics (vl = vy = 3.3v, vx = 5v = 12in, t a = +25 c, unless otherwise noted.) c l = 30 m f, r l = 25 w vcc_ switching (rise) 6 4 2 0 5 0 200 m s/div vcc_ (v) control input (v) max1600/3 toc-01 c l = 1 m f, r l = vcc_ switching (rise) 3 2 1 0 5 0 500 m s/div vcc_ (v) control input (v) max1600/3 toc-02 v 0.4 fault output low voltage i sink = 1ma, low state power-supply section note 3: not production tested. note 4: thermal limit not active in standby state (all switches programmed to gnd or high-z state).
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks _______________________________________________________________________________________ 5 _____________________________t ypical operating characteristics (continued) (vl = vy = 3.3v, vx = 5v = 12in, t a = +25 c, unless otherwise noted.) c l = 33 m f, r l = vcc_ switching (fall) 6 4 2 0 5 0 10ms/div vcc_ (v) control input (v) max1600/3 toc-03 c l = 0.1 m f, r l = vpp_ switching (rise) 15 10 5 0 5 0 200 m s/div vpp_ (v) control input (v) max1600/3 toc-05 c l = 1 m f, r l = 25 w vcc_ switching (fall) 6 4 2 0 5 0 10ms/div vcc_ (v) control input (v) max1600/3 toc-04 vpp_ switching (fall) 15 10 5 0 5 0 2ms/div vpp_ (v) control input (v) max1600/3 toc-06 c l = 0.1 m f, r l = c l = 1 m f, resistive overload, r l = 1 w vcc_ current limiting 4 2 0 2ms/div vcc_ (v) max1600/3 toc-08 input current (vcc output shorted) 1.5 2.0 1.0 0.5 0 1ms/div i vy (a) max1600/3 toc-09
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks 6 _______________________________________________________________________________________ _____________________________t ypical operating characteristics (continued) (vl = vy = 3.3v, vx = 5v = 12in, t a = +25 c, unless otherwise noted.) 0 0 10 12 12in supply current vs. input voltage 3 max1600/3 toc-18 input voltage (v) 12in supply current ( m a) 2 4 6 8 7 5 1 2 4 6 0 0 5 6 vl supply current vs. vl input voltage 30 max1600/3 toc-19 input voltage (v) vl supply current ( m a) 1 2 3 4 70 50 10 20 40 60 vx = vy = 0v 12in normal operation shutdown c l = 1 m f, r l = 50 w vpp_ current limiting 10 5 0 2ms/div vpp_ (v) max1600/3 toc-10 r l = 0.1 w input current (vpp output shorted) 10 5 0 200 300 100 0 100 m s/div vpp_ (v) i 12in_ (ma) max1600/3 toc-11 circuit of figure 2 vcc_ shutdown response 4 2 0 4 2 0 100 m s/div vl (v) vcc_ (v) max1600/3 toc-12
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks _______________________________________________________________________________________ 7 _____________________________t ypical operating characteristics (continued) (vl = vy = 3.3v, vx = 5v = 12in, t a = +25 c, unless otherwise noted.) 80 30 0 1000 max1600 vy on-resistance vs. current 40 70 max1600/3 toc-14 current (ma) vy r on (m w ) 200 400 600 800 60 50 35 45 75 65 55 t a = +85? t a = +25? t a = -40? 165 115 0 1000 max1603 vy on-resistance vs. current 125 155 max1600/3 toc-20 current (ma) vy r on (m w ) 200 400 600 800 145 135 120 130 160 150 140 t a = +85? t a = +25? t a = -40? 685 0 100 120 140 12in_ on-resistance vs. current 700 max1600/3 toc-15 current (ma) 12in r on (m w ) 20 40 60 80 720 710 690 695 705 725 715 vppa vppb 550 -40 60 80 100 12in_ on-resistance vs. temperature 700 max1600/3 toc-16 temperature (?) 12in r on (m w ) -20 0 20 40 900 800 600 650 750 950 850 0 0 5 6 vx, vy supply current vs. input voltage 0.3 max1600/3 toc-17 input voltage (v) vx, vy supply current ( m a) 1 2 3 4 0.7 0.5 0.1 0.2 0.4 0.8 0.9 0.6 vx vy channel a vpp control input. see logic truth tables . a1vpp 2 channel b vcc outputs vccb 9, 18, 20 channel b vpp output vppb 11 +12v supply voltage input, internally connects to channel b vpp switch. tie to vppb if not used. 12inb 12 channel a vpp output vppa 5 channel a vcc outputs vcca 7, 22, 24 +12v supply voltage input, internally connects to channel a vpp switch. tie to vppa if not used. 12ina 4 pin ground gnd 1 name function channel a vpp control input. see logic truth tables . a0vpp 3 pin description 110 60 0 1000 vx on-resistance vs. vcc_ load current 70 100 max1600/3 toc-13 vcc_ load current (ma) vx r on (m w ) 200 400 600 800 90 80 65 75 105 95 85 t a = +85? t a = +25? t a = -40? vx supply voltage inputs. vx pins must be connected to one another. input range is +3v to + 5.5v. vx is normally connected to 5v. vx 6, 8, 10
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks 8 _______________________________________________________________________________________ table 1. standard ?ntel?code (82365sl), code = gnd table 2. ?irrus?code, code = high (vl) stby = standby mode stby = standby mode mode active active active stby active active active active stby stby stby active active active active active _0vpp vpp_ 0 12in 1 vcc_ 0 gnd 1 gnd 1 high-z 0 gnd 1 vcc_ 0 12in 1 0 gnd gnd 0 gnd 1 high-z 0 gnd 1 vcc_ 0 12in 1 high-z vcc_ vx vy vy vy vy gnd vy vx vy vy vx vx vy gnd gnd gnd _1vcc _1vpp 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 _0vcc 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 pin description (continued) channel b vcc control input. see logic truth tables. b1vcc 16 channel b vpp control input. see logic truth tables. b1vpp 14 channel a vcc control input. see logic truth tables. a1vcc 26 three-level code-select input. see logic truth tables . low = standard ?ntel code high = ?irrus?code mid-supply = ?atabook?code (figure 6) code 25 logic supply-voltage input. connect to the +3.3v or +5v host system supply. vl can be supplied via the output of a cmos-logic gate to produce an overriding shutdown. when used as a shutdown input, vl should have a 1k series resistor with a 0.1 f capacitor to ground (figure 2). note that vl must be greater than undervoltage lockout for any switches to be turned on. vl 28 vy supply voltage inputs. vy pins must be connected to one another. input range is +3v to +5.5v. vy is normally connected to 3.3v. vy 19, 21, 23 fault-detection output. fault goes low during current limit, undervoltage lockout, or thermal limit. fault is an open-drain output that requires an external pull-up resistor. fault 17 channel b vcc control input. see logic truth tables. b0vcc 15 channel b vpp control input. see logic truth tables. b0vpp 13 pin name function channel a vcc control input. see logic truth tables. a0vcc 27 logic t r uth t ables mode active active active stby active active active _1vcc active stby _1vpp 0 stby stby 1 0 active stby 0 0 stby stby 0 0 stby 1 0 _0vpp 1 1 vpp_ 0 0 1 12in 1 0 1 vcc_ 0 1 0 0 gnd 1 0 high-z 1 0 0 high-z 0 1 1 gnd 1 1 1 vcc_ 0 0 1 12in 1 0 1 0 high-z 1 1 high-z 0 1 high-z 1 high-z 0 gnd 1 gnd 0 gnd 1 gnd vcc_ vy vx gnd vx vx high-z vx vy gnd gnd vy vy _0vcc 0 1 1 1 1 0 1 0 1 1 0 0 1 0 gnd 0 0 high-z high-z high-z
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks _______________________________________________________________________________________ 9 logic t r uth t ables (cont.) table 3. ?atabook?code, code = mid-supply (vl/2) stby = standby mode x = don? care mode active active active active active _1vcc stby _1vpp 1 active stby 0 1 1 1 0 0 1 1 _0vpp 1 vpp_ x vcc_ x gnd x 0 0 vcc_ x 0 12in x 1 0 gnd 0 x x high-z 12in x gnd vcc_ vx vy vy vx vx _0vcc 1 0 0 1 1 0 0 1 gnd vy gnd 1/2 max1600 1/2 max1603 current limit 3 w 0.08 w * vb3 vb12 0.14 w 40 w 20 w decode logic and uvlo charge pump current limit charge pump current limit thermal shutdown vcca vcca fault gnd vcca vppa 12in vy vy vx vx control inputs vl vdd shdn vb5 charge pump * 0.24 w for the max1603 figure 1. detailed block diagram (one channel of two) detailed description the max1600/max1603 power-switching ics contain a network of low-resistance mosfet switches that deliver selectable vcc and vpp voltages to two cardbus or pc card host sockets. the max1600/max1603 differ only in the vy switch on-resistance. figure 1 is the detailed block diagram. the power-input pins (vy, vx, 12in_) are completely independent. low inrush current is guaranteed by con - trolled switch rise times. vcc? 100 s minimum output rise time is 100% tested with a 1 f capacitive load, and vpp? 1ms minimum rise time is guaranteed with a 0.1 f load. these respective capacitive loads are chosen as worst-case card-insertion parameters. the internal switching control allows vcc and vpp rise times to be
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks 10 ______________________________________________________________________________________ controlled, and makes them nearly independent of resis - tive and ca pacitive loads (see rise-time photos in the typical operating characteristics ). fall times are a function of loading, and are compensated by internal circuitry. power savings is automatic: internal charge pumps draw very low current when the vcc switches are static. standby mode reduces switch supply current to 1 a. driving the vl pin low with an external logic gate (master shutdown) reduces total supply current to1 a (figure 2). operating modes the max1600/max1603 are compatible with the cirrus cl-pd67xx, databook db86184, and intel 82365sl pc card interface controllers (pcic). eight control inputs select the internal switches?positions and the operating modes according to the input code. select the proper code format for the chosen controller with the code input pin (see pin description and tables 1, 2, and 3). code reconfigures the logic decoder to one of three interface controllers: low = standard ?ntel?code (figure 5) high = ?irrus?code (figure 4) midsupply = ?atabook?code (figure 6) an additional 1 a (3 a max) of vl supply current will flow if code = midsupply (vl / 2). the max1600/max1603 have three operating modes: normal, standby, and shutdown. normal mode supplies the selected outputs with their appropriate supply volt - ages. standby mode places all switches at ground, high impedance, or a combination of the two. shutdown mode turns all switches off, and puts the vcc and vpp outputs into a high-impedance state. pull vl low to enter shutdown mode. to ensure a 0.05v/ s fall rate on vl, use a 1k series resistor and a 0.1 f capacitor to ground (figure 2). o vercurrent protection peak detecting circuitry protects both the vcc and vpp switches against overcurrent conditions. when current through any switch exceeds the internal current limit (4a for vcc switches and 200ma for vpp switches) the switch turns off briefly, then turns on again at the con - trolled rise rate. if the overcurrent condition lasts more than 2 s, the fault output goes low. fault is not latched. a continuous short-circuit condition results in a pulsed output current and a pulsed fault output until thermal shutdown is reached. fault is open-drain and requires an external pull-up resistor. thermal shutdown if the ic junction temperature rises above +150 c, the thermal shutdown circuitry opens all switches, including the gnd switches, and fault is pulled low. when the temperature falls below +130 c, the switches turn on again at the controlled rise rate. if the overcurrent con - dition remains, the part cycles between thermal shut - down and overcurrent. undervoltage lockout if the vx or vy switch input voltage drops below 1.5v, the associated switch turns off and fault goes low. for example, if vy is 3.3v and vx is 0v, and if the inter - face controller selects vy, the vcca output will be 3.3v. if vx is selected, vcca changes to a high-imped - ance output and fault goes low. when a voltage is initially applied to 12in_, it must be greater than 8v to allow the switch to operate. operation continues until the voltage falls below 2v (the vpp output is high impedance). when vl drops to less than 2.3v, all switches are turned off and the vcc and vpp outputs are high impedance. max1600 max1603 1k 0.1 m f 74hc04 vl vy vcca vppa 3.3v vppb vccb to sockets a and b figure 2. master shutdown circuit max1600 max1603 vl vx +5v vy figure 3. applying power to the vl input
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks ______________________________________________________________________________________ 11 a0vcc a1vcc a1vpp a0vpp b0vcc b0vpp b1vpp b1vcc 5in 12in 3in 0.1 m f 0.1 m f 0.1 m f max1600 max1603 main power supply +3.3v +5v +12v vppa vcca vppb vccb gnd vpp2 vpp1 vcc1 vcc2 interface card detect 3v card detect socket a cirrus logic cl-pd6720 cl-pd6722 cl-pd6729 a_slot_vcc pcmcia a interface pcmcia b interface a_-cd [2:1] b_-cd [2:1] b_5v_det a_5v_det b_slot_vcc vpp2 vpp1 vcc1 vcc2 interface card detect 3v card detect socket b a_-vcc_3 a_-vcc_5 a_vpp_pgm a_vpp_vcc b_-vcc_3 b_-vcc_5 b_vpp_pgm b_vpp_vcc host i/o controller video controller a_vpp_valid b_vpp_valid gnd n.c. n.c. isa_vcc +5v vdd vdd isa/pci interface isa/pci ibus vl code fault n.c. 0.1 m f 0.1 m f 0.1 m f 0.1 m f 17 51 17 51 43 (2) ( ~ 60) ( ~ 60) (2) 43 figure 4. application with cirrus logic interface b: vpp_eno b: vpp_en1 b: vcc_eno b: vcc_en1 a: vpp_eno a: vpp_en1 a: vcc_eno a: vcc_en1 vl vy vx 12in code b0vpp b1vpp b0vcc b1vcc a0vpp a1vpp a0vcc a1vcc vppa vcca socket interface gnd vppb vccb v cc max1600 max1603 82365sl df +3.3v +5v +12v to sockets a and b to sockets a and b isa bus socket b figure 5. application with intel interface applications infor mation supply bypassing bypass the vy, vx, and 12in_ inputs with ceramic 0.1 f capacitors. bypass the vcc_ and vpp_ outputs with a 0.1 f capacitor for noise reduction and esd protection. power-up apply power to the vl input before any of the switch inputs. if vx, vy, or 12in receive power before vl rises above 2.8v, the supply current may be artificially high (about 5ma). when the voltage on vl is greater than 2.8v, the part consumes its specified 24 a. to avoid power sequencing, diode-or vx and vy to vl through a 1k resistor (figure 3). take care not to allow vl to drop below the 2.8v maximum undervoltage lockout threshold.
max1600/max1603 dual-channel car dbus and pcmcia vcc/vpp power -switching networks maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________ maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 1998 maxim integrated products printed usa is a registered trademark of maxim integrated products. __________________ pin configuration 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 vl a0vcc a1vcc code vcca vy vcca vy vccb vy vccb fault b1vcc b0vcc gnd a1vpp a0vpp 12ina vppa vx vcca vx vccb vx vppb 12inb b0vpp b1vpp ssop top view max1600 max1603 ___________________ chip infor mation transistor count: 4372 ________________________________________________________ package infor mation b:_vctl1 b:_vctl2 b:_vctl0 a:_vctl1 a:_vctl2 a:_vctl0 vl vy vx 12in code b0vpp b1vpp b0vcc b1vcc a0vpp a1vpp a0vcc a1vcc vppa vcca socket interface gnd vppb vccb v cc max1600 max1603 db 8 7144 +3.3v +5v +12v to sockets a and b to sockets a and b note: a0vpp and b0vpp, pins 3 and 13 on the max1600, are tied to gnd. 1m 1m figure 6. block diagram of the databook db87144 pci to cardbus controller interface to the max1600. ssop.eps


▲Up To Search▲   

 
Price & Availability of MAX1600MAX1603

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X